
AD-A250 113

WRDC-TR-90-8007

Volume III
Part 9

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume III - Configuration Management
Part 9 - Software Development Guidelines

J. Maxwell

Control Data Corporation
Integration Technology Services
2970 Presidential Drive" I--
Fairborn, OH 45324-6209 D IC.LE!

MAY III

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

App oved for Public Release; Distribution is Unlimited

ANf, TI-ACR I -VNG IECNOL§*1Y D IRECTORATE
-;~:'rI{T REEARCb AND DEVELOPMENT CENTER

Alp ERCi T COMMAND
>%KI *,{TRATTERSON AIR PORCE EASE, OHIO 4b433-6533

92-11947
9r' 5 O1 031

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.

This report is releasable to the National Technical
information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations

//

DA D L. J S NPr ject Manager DATE
Wri ht-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

bRUCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returncd uAles rctur, is iequired by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
UM 620324000 WRDC-TR-90-8007 Vol. III, Part 9

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2970 Presidential Drive
Fairbom, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

________________________10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-P - rson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO. NO.
1. T IT LE (include Security C lassification) 7801 NF 5 60 F O . 2 9 6

See Block 19 78011F 595600 F95600 20950607

12. PERSONAL AUTHOR(S)
Control Data Corporation: Maxwell, J.

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/l/87-12/31/90 t 990 September 30 51

16. SUPPLEMENTARY NOTATION

WRDC/MTI Project Priority 6203
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.
1308 1 19ur

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This document identifies and explains the guidelines and conventions used by IISS testbed developers throughout the IISS
software development life cycle.

Block 11 - INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Vol III - Configuration Management
Part 9 - Software Development Guidelines

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

UM 620324000
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Accession For
NTIS GRA&I (

DTIC TAB 0
Unannounced 0
Justificatlo

By
Distribution/

Availability Codes
'vall and/oriiiNot [Speolal

UM 620324000
30 September 1990

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iv

UM 620324000
30 September 1990

Table of Contents

Pago

SECTION 1.0 INTRODUCTION 1-1

SECTION 2.0 PRELIMINARY DESIGN GUIDELINES/
CONVENTIONS 2-1

2.1 Functional Requirements 2-'
2.2 Information Requirements 2-1
2.3 IDEFI Traceability 2-1

SECTION 3.0 DETAILED DESIGN GUIDELINES 3-1
3.1 Module Specification 3-1
3.2 Procedural Descriptions 3-2
3.2.1 Primary Purpose 3-2
3.2.2 Level of Detail..................... 3-2
3.2.3 Basis for Development 3-2
3.2.4 Syntactical Rules 3-2
3.3 Suggestions for Complexity Adding 3-2
3.3.1 Module Number 3-2
3.3.2 Interactions 3-2

SECTION 4.0 PROGRAM CONSTRUCTION
GUIDELINES/CONVENTIONS 4-1

4.1 General Program Construction
Guidelines/Conventions 4-1

4.1.1 Design Documents Kept Current 4-1
4.1.2 Program Banner 4-1
4.1.3 Program Header 4-1
4.1.4 Special Comments 4-1
4.1.5 Error Handling 4-2
4.1.6 Mesage Storage 4-2
4.1.7 Tables 4-2
4.1.8 Indentations 4-2
4.1.9 Nested IF Statements 4-2
4.2 COBOL Language

Guidelines/Conventions 4-2
4.3 FORTRAN Language

Guidelines/Conventions 4-3
4.4 "C" Language Guidelines/Conventions . 4-4
4.4.1 Portability Issues 4-4
4.4.1.1 Data Types 4-4
4.4.1.1.1 Character Constants 4-4
4.4.1.1.2 Character Strings 4-4
4.4.1.1.3 Character-to-integer Conversion 4-4
4.4.1.1.4 Integers 4-5
4.4.1.1.5 Pointers 4-5
4.4.1.1.5.1 Conversions 4-5
4.4.1.1.5.2 Relational Comparision 4-5
4.4.1.1.6 Revister Variables 4-5
4.4.1.1.7 Unions 4-6
4.4.1.1.8 Globals 4-6

v

UM 620324000
30 September 1990

4.4.1.2 Bitwise Logical Operations 4-6
4.4.1.2.1 Shifting.................... 4-6
4.4.1.2.2 Masking 4-6
4.4.1.3 Coding Practices 4-6
4.4.i.3.1 Typedef 4-6
4.4.1.3.2 Storage Alignment 4-7
4.4.1.3.3 Variable Number of Function

Arguments 4-7
4.4.1.3.4 Bad Coding 4-8
4.4.1.3.4.1 Order of Evaluation of

Function Arguments 4-8
4.4.1.3.4.2 Order of Evaluation of

Operator Expressions 4-8
4.4.1.3.4.3 Order of Assignment to Words

and Integers, Byte Ordering.. 4-8
4.4.1.3.4.4 Embedded Machine Dependent

Code 4-8
4.4.1.3.4.5 Functions vs. Macros 4-8
4.4.1.4 Summary 4-9
4.4.2 Use of stdtyp.h 4-9
4.4.3 Lexical Rules for Operators 4-10
4.4.4 Lexical Rules for Control

Structures 4-10
4.4.5 Lexical Rules for Functions 4-11
4.4.6 Preprocessor Symbols 4-12
4.4.7 References 4-12

SECTION 5.0 LANGUAGE IMPLEMENTATION IDIOSYNCRACIES. 5-1

SECTION 6.0 PROGRAM IMPLEMENTATION CONVENTIONS 6-1
6.1 Use of Programming Templates 6-1
6.2 COBOL Template 6-1
6.3 FORTRAN Template 6-1
6.4 "C" Template 6-1

SECTION 7.0 IISS ERROR HANDLING PHILOSOPHY-... 7-1
7.1 Introduction...o.....o...... .. 7-1
7.2 Overall Philosophy7-1
7.2.1 Error Definition....... 7-1
7.2.2 Error Handling Objectives... 7-2
7.2.3 Error Handling Philosophy..... 7-2
7.2.4 IISS Subsystem Error Status Codes 7-3
7.2.5 IISS System Wide Error Status Codes 7-5
7.2.6 Conditional Data Items............. 7-8
7.2.7 Error Processing/Logging........... 7-8
7.2.8 Error Log File....................... 7-14
7.2.9 Error Messages..................... 7-14
7.2.10 Error Communication 7-14
7.2.11 Utilities............................ 7-17
7.3 Network Transaction Manager 7- 17
7.3.1 Overview 7-17
7.3.2 Error Codes.......................... 7-18
7.3.3 Error Communication................ 7-18
7.3.4 Asynchronous Status Messages 7-18

vi

UM 620324000
30 September 1990

7.4 User Interface........................ 7-19
7 .4 .1 Overview 7-19
7.4.2 Asynchronous Status Messages 7-19
7.4.3 Test-mode and Debug-mode 7-19
7.4.4 Error Communication............. 7-20
7.4.5 Message Management7-20
7.5 Common Data Model Processor...........7-20
7. 5.1 Precompiler. o... 7-20
7.5.2 Query Processing..o......o............7-20
7.6 Communications Subsystem 7-21
7o7 IPC and IHC......... o..7-21

vii

UM 620324000
30 September 1990

LIST OF ILLUJSTRATIONS

Figure Title Page

6-1 COBOL Program Template....................6-2
6-2 Fortran Template 6-4
6-3 "C" Template 6-5
7-1 Standardized Error Codes......................... 7-6
7-2 ERRPRO Module Specification................. 7-10
7-3a How to call ERRPRO from Cobol.................... 7-11
7-3b How to call ERRPRO from "C"...................... 7-12
7-4 SIGERR Definition 7-15
7-5 How to call SIGERR............................... 7-16

viii

UM 620324000
3) September 1990

SECTION 1

INTRODUCTION

The purpose of this document is to identify and briefly
explain guidelines and conventions to which the entire coalition
should adhere throughout the various phases of IISS software
development.

Several companies, each with different opinions relative to
the content of the deliverable items for a development effort,
are participating in the IISS coalition. It is important,
therefore, that the coalition agree to specific development
guidelines and conventions which will serve to focus efforts
towards achieving a product characterized by maximal
flexibility, understandability, and maintainability.

Guidelines and conventions proposed in this document are
divided into three categories corresponding to major steps of
the product life cycle: preliminary design, detailed design and
program construction/testing. More specifically, the
preliminary design corresponds to the first category in the
Formulate and Justify Solution activity in the ICAM Life Cycle
where, in preliminary design, system specification (SS), system
design specification (SDS), development specifications (DS) et
al. must be produced. The detailed design corresponds to the
second category of the same activity wherein product
specifications (PS) and unit test plans (UTP) must be produced.
The third category contains program construction implementation
testing which corresponds to the Construct and Integrate
Solution activity of the ICAM Life Cycle wherein computer
programs are actually installed and made ready for the user.

1-1

UM 620324000
30 September 1990

SECTION 2

PRELIMINARY DESIGN GUIDELINES/CONVENTIONS

2.1 Functional Requirements

IDEFO will be used as the primary vehicle for conveying an
understanding of IISS functional requirements. IDEFO models
will consist of appropriate function diagrams and associated
text and glossary. Criteria for evaluating the quality and
understandability of IDEFO models will include the design goals
of maximizing cohesion and minimizing coupling. Familiarity
with these concepts can be gained by referring to any one of
several Yourdon Press texts (e.g., "Structured Design" by
Yourdon and Constantine, "Practical Guide to Structured Systems
Design" by Page-Jones) or the latest IDEFO manual.

2.2 Information Requirements

IDEFl will be used as the primary vehicle for conveying an
understanding of IISS information requirements. IDEFl models
will be evaluated in terms of well-known normalization rules
(e.g., no repeat rule, non-null rule, home entity class for each
attribute class).

2.3 IDEFI Traceability

IDEFO is the scoping tool for IDEFI development.
Therefore, entity classes and attribute classes included in
IDEFl models should be justified by and traceable to at least
one IDEFO ICOM. No formal technique will be used to correlate
entity classes and attribute classes to ICOM's.

2-1

UM 620324000
30 September 1990

SECTION 3

DETAILED DESIGN

3.1 Module Specification

Each module which appears on a structure chart should be
associated with a specification sheet which contains the
following information:

o Identification - The module name in the form of a verb
phrase. An abbreviation of the module name, limited to
7 characters, will also be identified and used as the
actual program name of the module, if it is contemplated
that the module will actually be implemented as a
discretely and independently compiled program.

o Description - A brief description of the function
performed by the module, including any special design or
coding considerations. For lowest level modules
pseudocode can be used if necessary and should follow
the standards outlined in Section 3.2.

o Interfaces

Entry Conditions - Descriptions (variable names,
types, dimensions) for all input parameters.
Description of global variables and acceptable ranges
at the time of entry to the module.

Exit Conditions - Descriptions (variable names,
types, dimensions) for all output parameters, and the
names of all modified global variables.

Global Blocks - Name of global block and statement of
its purpose. Description (variable name, type,
dimension, initial values) for each variable
contained in the block.

o Data Organization

Local Variables - Descriptions (variable names,
types, dimensions, initial values) for all
significant local variables used by the module.

Database Interaction - Names of all database entities
and attributes used by this module. Description of
the processing performed on these data items.

o Limitations - Restrictions and limitations of the code,
including user, operator and programmer impact.
Identification of tables and items which might require
modification due to unexpected volume increases or
overflows. Errors detected, error codes returned and
subsequent action for each.

3-1

UM 620324000
30 September 1990

3.2 Procedural Descriptions

If necessary, pseudocode may be utilized for describing the
procedural content of lowest level modules identified on
structure charts. Guidelines and conventions relative to the
development of pseudocodes specifications are described as
follows:

3.2.1 Primary Purpose

The primary purpose of pseudocode is to enable the designer
to express the control flow of a function in a straightforward,
easy-t.-understand manner, using a mixture of a normal English
prose, selected verbs, and limited formal language expressions.

3.2.2 Level of Detail

Pseudocode should be written at a level of detail which
permits direct coding of the program from it.

3.2.3 Basis for Development

Pseudocode is developed based on the processing portion of
the structure chart, which specifies what functions are to be
accomplished. The pseudocode specific-a-tions indicate when
and how this processing will be performed.

3.2.4 Syntactical Rules

Three syntactical rules are always required:

1. Use capital letters to identify statements with special
meanings, such as PERFORM UNTIL and END PERFORM.

2. Use indentation to identify statements to be performed
within a loop or as otherwise necessaiy to promote
clarity.

3. Indent with spaces, never use tabs. Interpretation of
tabs is not consistent across all machines (e.g. IBM).

3.3 Suggestions for Complexity Adding

3.3.1 Module Number

Each module should call a maximum of 4 or 5 modules rather
than 6 or more. Experience has shown that more than 6 modules
may generate to much detail. A program which decomposes into 4
modules increases the likelihood that the actual code produced
for that module will fit on one page.

3.3.2 Iterations

A module should contain at most 1 iteration. An
alternative approach for nested iteration is to equate the
innermost iteration(s) to a new module, thereby pushing

3-2

UM 620324000
30 September 1990

complexity down to a lower level. This can lead to what Yourdon
calls "procedural cohesion" which is not totally undesirable and
can be justified for the sake of minimizing complexity.

Therefore, nested iterations are not desirable and are to
be avoided.

3-3

UM 620324000
30 September 1990

SECTION 4

PROGRAM CONSTRUCTION GUIDELINE/CONVENTIONS

This section is divided into 2 subsections. The first
subsection, 4.1, identifies and describes general guidelines and
conventions thought to be independent of the characteristics of
a specific implementation language. The second subsection, 4.2,
presents guidelines and conventions germane to program
construction using COBOL/Fortran/"C".

4.1 General Program Construction Guidelines/Conventions

4.1.1 Design Documents Kept Current

All design documents should be kept current during coding.

4.1.2 Program Banner

Each program will include a program banner which will
identify the program and the configuration item of which it is a
part. The banner immeditately preceeds a program header
described in 4.1.3.

4.1.3 Program Header

Each program will include a program header containing a
subset of detailed design information. Specifically, the header
will include:

Description
Entry Conditions
Exit Conditions
Global Blocks
Local Variables
Database Interaction

4.1.4 Special Comments

The use of special comments should be limited. Except for
unusual circumstances, the only form of special comment to beembedded within procedural sections of the program is a comment

immediately preceding each call to a subroutine. For example,
the following sequence of statements illustrates such commenting
in a COBOL procedure division:

,
* FIND OP PLAN SELECTED FOR DISPATCH

CALL FOPSFD USING STATUS
IF SUCCESSFULL

*

4-1

UM 620324000
30 September 1990

4.1.5 Error Handling

Error handling will be inside the component (e.g. by a call
to an error handling procedure) where the error is discovered
and will follow a standard format, i.e., module name, line id,
message, and debugging information. Error messages are output
to a log file so that the information can be retained after
development to facilitate system maintenance.

4.1.6 Message Storage

All messages issued by the system should be stored and
accessed through tables. This facilitates message maintenance
and error traceback.

4.1.7 Tables

Do not code tables into source programs when the tables may
change with significant frequence. Such tables must be data
sets which are read and loaded each time the program is
executed.

4.1.8 Indentations

All indentations should be four spaces.

4.1.9 Nested IF Statements

When nested IF statements are required, indent them for
clarity.

4.2 COBOL Language Guidelines/Conventions

The following are COBOL guidelines and conventions:

1. Represent subscripts, counters, etc. in binary
(COMP-1).

2. Use the VALUE clause whenever possible to initialize
WORKING-STORAGE instead of a MOVE statement.

3. Sequence COBOL programs as follows:

o File Control - Show print files last.
- Input files.
- I/O files and sort files.
- Output files.

o File Section - Arrange FD in same order as SELECT
statements in FILE-CONTROL section. Include record
layouts in this section following applicable file
descriptions.

o Working Storage - Group data elements of a like
kind, e.g.:
- Switches like TRAN-EOF-SW and VALID-TRAN-SW.
- Flags like STATUS-FLAG.
- Control fields (areas reserved for data being

sequenced).

4-2

UM 620324000
30 September 1990

Print fields like LINE-COUNT and
LINES-ON-PAGE.

- Counters like TRAN-COUNT and DUPLICATE-COUNT.
- Subscripts like RATE-TABLE-SUB.
- Tables.
- Report headings.

4. Increase all level changes in the record description by
a minimum of two and always use two positions, e.g.,
01,03,05,07.

5. Condition name, Level 88, entries must follow an
elementary item and be indented four columns.

6. Condition names should be used to describe and test
codes.

7. Statements are not to be placed on the same line as a
paragraph name.

8. Each paragraph will be preceded by one or more blank
lines (asterisk in Column 7).

9. only one statement will appear on a line.

10. When using conditional statements, align the parts so
that related IF and ELSE clauses are aligned.

11. All codes should adhere to the most current ANSI
standard.

4.3 FORTRAN Language Guidelines/Conventions

The following are FORTRAN guidelines and conventions:

1. All codes must adhere to the most current ANSI
standard. No nonstandard features shall be used, e.g.
the names of all variables shall not exceed 6
characters.

2. All global data items will be defined as named common
and defined as include files.

3. All variables shall be declared explicitly. All
integer variables shall be explicitly defined as 1*2 or
1*4. This is to avoid confusion in relying on vendor
default declarations which vary from 1*2 to 1*4. This
is especially important for data that are passed as
arguments.

4. Label numbers shall start at 10 and be incremented by
10.

5. Labelled statements shall not contain executable
statements; CONTINUE statement shall be used.

6. Continuation lines shall be made by placing a '+' in
column 6.

4-3

UM 620324000
30 September 1990

7. Comment statements shall be preceded and followed by

empty comment statements, e.g.:

C**

C** commentC**

4.4 C Language Guidelines/Conventions

4.4.1 Portability Issues

4.4.1.1 Data Types

The use of stdtyp.h header file defined in a latter section
of this document should eliminate most of the portability
problems outlined in this section.

4.4.1.1.1 Character Constants

The value of a character constant is the numeric value of
the character in the machine's character set. For example, the
character '0', zero, in ASCII is numeric 48, and in EBCDIC it is
240. To make a program independent of a particular numeric
value, character constants should be written as a single
character written within single quotes, such as '0'.

4.4.1.1.2 Character Strings

A character string is a sequence of zero or more characters
surrounded by double quotes. To the C compiler, a character
string is an array whose elements are single characters. The
compiler places the null character '\0' at the end of each
character string so that programs can easily find the end. On
some machines, there is a fixed limit to the length of a
character string. For example, the Vax-ll C compiler has a
limit of 1000.

4.4.1.1.3 Character-to-integer Conversion

Character conversion to integer may produce a negative
integer. On some machines, a character which has a leftmost bit
as 1 will be converted to a negative integer because of sign
extension. While on other machines, a character is promoted to
an integer by adding zeros at the left end, and, thus, it will
always be positive. For a machine's standard character set, the
language definition of C provides that these characters will
never be negative.

The getchar () function must be able to return to a
variable all possible characters so it may be used for any type
of input; therefore, its value must not be stored as a character
but if stored should be stored into an integer variable. In
addition, the special End of File (EOF) character may have the
value -1 so that a comparison of a character variable to the EOF
value on a machine which does not do sign extension will always
fail.

4-4

UM 620324000
30 September 1990

4.4.1.1.4 Integers

Positive integers are truncated toward 0 when divided, but if
either of the operands is a negative integer, the method of
truncation is machine dependent.

4.4.1.1.5 Pointers

4.4.1.1.5.1 Conversions

On many machines a pointer may be assigned to an integer and
back again without changing it, no scaling or conversion takes
place, and no bits are lost. Also, pointer variables of one type
may be assigned to pointer variables of a differing type, i.e., a
pointer which points to an integer value may be assigned to a
pointer which points to a complex structure. But both types of a
pointer assignment are nonportable since on some machines these
assignments produce pointers which cause addressing exceptions
when used.

Although pointers to one type may not be assigned to pointers
to another type, an explicit type-conversion operator is
frequently used to convert a pointer to one type to a pointer to
another type. This operation is called casting. The following
example illustrates type casting:

If p is declared: char *p, then (struct treenode *) p
converts p from a pointer to an integer to a pointer to the
specified structure.

Functions which return pointer values and arguments which
hold pointer values should be declared as such even though the
default type for functions and arguments is int. Not declaring
pointer variables as such in not good practice since it relies on
the details of implementation and machine architecture which may
not hold depending on the particular compiler being used.

4.4.1.1.5.2 Relational Comparisions

Although a pointer can be compared to an integer, the result
of such a comparison is machine dependent except for comparison to
the integer constant 0. A pointer variable containing a 0 is
guaranteed not to point to any object and is considered a null
pointer.

Pointer comparison between pointers when pointers point to

objects in the same array is portable.

4.4.1.1.6 Register Variables

Register variables are used to inform the compiler that these
variables will be used heavily. Register variables are placed in
machine registers. This capability may result in faster and
smaller programs. Only automatic variables and formal parameters
of a function may be declared as register. There are, however,
some machine dependencies. The restrictions are placed on the
types and number of effective register variables. For example,
for some compilers, only the first three register declarations are
effective, and their types may be selected from int, char, or

4-5

UM 620324000
30 September 1990

pointer. Also for some compilers, pointer register variables to
be effective, they be declared before other register variables.
All excess or invalid register declarations are ignored.

4.4.1.1.7 Unions

A variable which may contain objects of different types and
sizes at different times is called a union. These types of
variables are frequently used to provide a means of manipulating
different kinds of data in one storage area but to allow the
program to be free of any machine-dependent information. Unions,
however, must be used carefully. If something is stored as one
type and extracted as another type, the results are machine
dependent. The program code must keep track of what type is
currently stored in a union.

4.4.1.1.8 Globals

Global variables must be defined exactly one time without the
extern keyword and then may be used wherever needed with the
extern keyword, i.e., they are defined once but may be referenced
any number of times.

4.4.1.2 Bitwise Logical Operations

4.4.1.2.1 Shifting

Shifting operations may provide different results on
different machines. Right shifting, >>, a signed quantity on some
machines will fill with sign bits (arithmetic shift); while on
others, these bits will be filled as O's (logical shift). A
variable being used with such operations as shifting should be
declared as unsigned since this declaration guarantees that the
vacated bits will be zero-filled, not signed-bit filled,
regardless of the machine the program is run on.

4.4.1.2.2 Masking

Masking operations usinq the bitwise logical operator AND, &,
should use mask constants which are independent of the word
length. For example, to set the last 6 bits of x to zero:

x & -077 is preferred to x & 0177700

The second expression assumes that the variable x contains a
16-bit quantity, while the first expression is independent of word
length.

4.4.1.3 Coding Practices

4.4.1.3.1 Typedef

The C construct typedef provides a means for creating new
data type names. This facility is useful for several reasons:

1. To parameterize a program against portability problems. If
typedef's are used for the data types which may be machine
dependent, then only these typedefs must be modified when porting
the program.

4-6

UM 620324000
30 September 1990

2. A program is better documented when typedef's are used
since a mnemonic name for a pointer to a structure,
for example, LISTPTR, would be easier to understand
than one declared as a pointer to a complex
structure.

3. Future enhancements to the compiler or other utilities
such as lint might make use of typedef declaration
information to do some extra checking of programs.

4.4.1.3.2 Storage Alignment

Storage must be aligned properly for the types of object
which are to be stored in it. Machines vary, but for each
machine there is a most restricted type. The most restricted
type means if this type can be stored at a specified address,
then all other data types can be also. Normally, the compiler
properly aligns the variables, but when a program does its own
st.ac allocation of a data structure, a union should be
declared to achieve proper alignment. This union should consist
of the structure and the most restricted data type. For
example:

typedef double ALIGNED; /* forces alignment */
IBM 360/370

union treenode (/* tree node element */
struct

union treenode *leftptr; /* left branch*/
int nodeval;
union treenode *rightptr; /* right branch*/

) t;
ALIGNED dummy; /* force alignment when nodes */

/* are allocated */1;
typedef union treenode TREENODE;

The use of typedef and union handles alignment. The use of
malloc/calloc for storage allocation eliminate the need for
program-handled storage alignment.

4.4.1.3.3 Variable Number of Function Arguments

Functions which accept a variable number of arguments are
not really portable because there does not exist a portable
method of permitting the called function to determine the number
of arguments actually passed in a given call. For example, the
printf function is non-portable and must be changed for
different environments if its to be able to handle a mismatch
between the number of arguments and the format. If the function
has only arguments of known types, it is possible, however, to
mark the end of the argument list in a standard way, for
example, using a special argument value that flags the end of
the list.

4-7

UM 620324000
30 September 1990

4.4.1.3.4 Bad Coding

Some portability problems arise when questionable coding
practices are used.

4.4.1.3.4.1 Order of Evaluation of Function Arguments

The order of evaluation of function arguments should not
depend on in program code since the C language does not specify
any order. On some machines, it is right to left but left to
right on others.

4.4.1.3.4.2 Order of Evaluation of Operator Expressions

The language C does not define the order of evaluation of
expressions. Most compilers will compute the expressions in the
order that they deem is the most efficient, regardless of any
side-effects caused by the expressions. Side-effects are the
resulting change of some variable as a by-product of the
evaluation of an expression. For example:

a[i] = i++

may evaluate differently depending on the order the compiler
uses to evaluate this statement. The subscript could be the old
value of the variable i or the new value. To insure a
particular sequence of evaluations, temporary variables should
be used.

4.4.1.3.4.3 Order of Assignment to Words and Integers, Byte
Ordering

The order in which fields are assivned to words and
characters are assigned to integers varies, right-to-left on
some, left-to-right on others. A field is defined as a set of
adjacent bits within a single int. A field is used to pack
several objects into a single machine word. Frequently, this
construct is used to create a set of single-bit flags in
applications that need to use externally-imposed data formats
such as hardware device interfaces that require the facility of
addressing pieces of a word.

4.4.1.3.4.4 Embedded Machine Dependent Code

Provrams that need to use information whose structure and
content is maintained by machine's operatinq system should not
embed actual declarations for this information within the
programs themselves. This information should only be
represented in standard header files which may be included in
the programs.

4.4.1.3.4.5 Functions vs. Macros

Some functions may be implemented using the C-preprocessor
micro facility. For example, an operation to find the maximum
of two arguments could be defined using a macro. This
definition does not need to take into account different data
types as would a function written to do the same operation. As

4-8

UM 620324000
30 September 1990

long as the arguments are treated consistently, the macro
definition will work for any data type. The following
illustrates such a definition:

#define max(X, Y) ((X) > (Y) ? (X) : (B))

This macro will expand into in-line code whenever it is used.

4.4.1.4 Summary

This outline on portability issues is by no means
exhaustive, but does provide an insight to the kinds of
portability considerations that C programmers face when porting
programs to different operating systems and machines. Purely
hardware issues like word size and size of various data types
can be addressed by using preprocessor macro definitions to test
the type of machine or compiler the code is being developed for
and compiled on. An appropriate synonym for the data type
should be defined by using typedef's. This method is outlined
in detail in the listing of the include header file stdtyp.h.

4.4.2.0 Use of stdtyp.h

Every C routine should include <stdtyp.h> first thing.
Functions should then use only the following elementary data
types which are defined in stdtyp:

float - single precision floating point
double - double precision floating point

long - 32 bit (or larger) signed integer
lbits - 32 bits (or more) for bit manipulation

int - natural size signed integer
unsigned - natural size unsigned integer
bool - natural size logical (zero / non-zero only)

short - 16 bit (or larger) signed integer
ushort - 16 bit (or larger) unsigned integer
bits - 16 bit (or more) for bit manipulation

char - single machine character
tiny - 8 bit (or larger) signed integer
utiny - 8 bit (or larger) unsigned integer
tbits - 8 bits (or more) for bit manipulation
tbool - 8 bit (or larger) logical (zero / non-zero only)

metachar - 16 bit (or larger) augmented character (signed)

void - function that returns no value

fortran - storage class for foreign (non-c) routines or
C routines which are callable from foreign
routines

4-9

LU 620324000
30 September 1990

The natural size items should be used for maximum efficiency if
at least 16 bits is sufficient and you don't really care about
the actual length. Tiny numbers should only be used where space
is critical since they may involve significantly more processing
than other sizes.

Since not all compilers support ushort, tiny, and utiny, the
functions USHORT(), TINY(), and UTINY() should be used whenever
referencing them (e.g. a = TINY(x);).

The following utility macros are also defined in stdtyp and
should be used when appropriate:

LURSHIFT(n, b) - unsigned long right shift of b for n bits
MAX(a, b) - maximum of a and b
MIN(a, b) - minimum of a and b
ABS(a) - absolute value of a
STRASN(a, b) - portable a = b for structures
NULL - null pointer value
TRUE - 1 FALSE - 0
SUCCESS - Success status for exit
FAILURE - Failure status for exit

4.4.3.0 Lexical Rules for Operators

Unary operators should be written with no space between them and
their operands (EXCEPTION: sizeof should be followed by a
blank).

The operators "->", " and "(]" should also have no space
around them.

Assignment operators and the conditional operator should always
have space on both sides.

Other binary operators should usually have space around them,
but may appear with no space if they are of higher precedence
than other operators in the same expression.

Keywords are always followed by one blank.

There should be no space between a function name and its
argument list.
Examples:
x = -a * b;

for (i - 1; i < n; i++) printf("%s%c", str[i], (i < n-l) ? ''\n') ;

s = a*a + b*b;

4.4.4.0 Lexical Rules for Control Structures

Every line which is part of the body of a C control structure is
indented one tab stop farther than its controlling line unless
the body is a single statement, in which case it may appear
immediately following the control structure on the same line.

4-10

UM 620324000
30 September 1990

If braces are used, each opening or closing brace appears on a
line by itself, indented to the same level as the enclosed
statements.

For multiple choice constructs where "switch" is not
appropriate, the "else if" construct should be used. Each "else
if" (and trailing "else", if used) is indented to the same level
as the initial "if".

Braces should always be used for "do - while" with the "while"
part following the closing brace on the same line. This
eliminates possible confusion with "while".

Examples:

if (x(i] >) max = i;

if (a == 1)

init (x);
a = 2;

if (a > b)
if (a > c) max = a;
else max = c;
else if (b > c) max = b;
else max = c;

if (a.local)

*'else if (a.global)

e)*lse

do
ptr = ptr->next;
} while (ptr->node != inode);

4.4.5.0 Lexical Rules for Functions

The order of statements in a source file should be: preprocessor
#include statements, preprocessor #define statements, external
variable definitions, and functions, all beginning at the left
margin.

Within a function, variable declarations should be separated
from executable code by a blank line.

Example:

#include <stdtyp.h>
#include <stdio.h>

4-11

UM 620324000
30 September 1990

#define BUFSIZ 100

FILE *infile;

char *fillbuf(buf) /* fill buffer */
char buf[BUFSIZ];

int i;
char *ptr = buf;

for (i = o; i < BUFSIZ; i++) *ptr++ = getc(infile);
return (buf);I

4.4.6.0 Preprocessor Symbols

The following preprocessor symbols are available for handling
system dependent code:

ebcdic - defined 1 the system character set is EBCDIC
instead of ASCII

vaxllc - defined for vax-ll c compiler
whitesmith - defined for whitesmith c compiler
ibm - defined for Bell C/370 compiler
iswb - defined for IS/Workbench compiler
vms - defined when the operating system is VMS
os370 - defined when the operating system is OS/370
unix - defined when the operating system is unix

These symbols can be used to escape to a standard operating
system routine instead of a C routine. (For example, a bit
manipulation routine could call the VMS run-time library
routines that provide access to the VAX bit manipulation
instructions if vms is defined, but use the C bit manipulation
operators otherwise.)

4.4.7.0 References

Plum, Thomas, C Programming Standards and Guidelines - Version U
(Unix and Offspring) (3rd edition, Plum Hall Inc, Cardiff, NJ,
January 1982.

4-12

UM 620324000
30 September 1990

SECTION 5

LANGUAGE IMPLEMENTATION IDIOSYNCRASIES

To ensure maximum portability of IISS software, not only
should ANSI COBOL 74 and Fortran 77 standards be adhered to, but
also it is necessary to recognize the difference in
implementation mechanisms of the standards by different computer
vendors. These differences are attributed to variations in
computer architecture. The most significant differences lie in
data representation and program organization. As these
discrepancies are identified, information relating to them
should be distributed among the IISS team. Until a complete
well-documented list has been created, developers should avoid
using as many vendor-dependent features as possible. Currently,
the following machine-related differences have been identified:

1. The Vax Cobol compiler will initialize data items depending
on the PICTURE and VALUE clauses. If there is no VALUE clause,
the VAX compiler will initialize the field to zeroes if numeric,
UNDEFINED if indexed data item or INDEX, and SPACES for anything
else. The IBM Cobol compiler will only initialize values if
the VALUE clause is specified; if not specified, the everything
is UNDEFINED. The recommendation is made that all variables
have VALUE specified for initialization purposes.

2. Casual conversio" betweens PIC 9, PIC X, and various
COMPUTATIONAL variable must be carefully controlled as
different interpretations of the information as far as size and
internal representation may occur on different machines.

3. Quotation marks and apostrophes, as well as underbars and
dashes, are being randomly tossed about in Cobol and Fortran
programs to the point that entire program sets may not compile
on another machine without correcting for conversion. This must
be carefully checked for each language in order to insure
portability.

5-1

UM 620324000
30 September 1990

SECTION 6

PROGRAM IMPLEMENTATION CONVENTIONS

6.1 Use of Programming Templates

Programming templates are introduced into program modules
when they are first being written from scratch. The templates
provide a common header format so that all programs can be
quickly understood by anyone picking up the module for the first
time. The particular formats must also be adhered to so that
our Fully Automated Documentation System can pick up relevant
information it needs. This then provides a variety of
information about modules and their interactions with each other
without having to read the actual code which was written. The
templates form the common convention to which all programs must
adhere.

6.2 COBOL Template

The COBOL program template is depicted in Figure 6-1. If
any comment on the template does not apply, the programmer can
choose to put in (NONE) or delete the comment from the format.
For example, if a program does not have any include files, the
comment for INCLUDE FILES can be deleted from the program or the
programmer can insert an additional comment line to indicate
(NONE).

6.3 Fortran Template

The FORTRAN program template is depicted in Figure 6-2.

6.4 "C" Template

The "C" program template is depicted in Figure 6-3.

6-1

UM 620324000
30 September 1990

IDENTIFICATION DIVISION.
PROGRAM-ID. ??????.

************* *** *** ** *** ********** ***** ***** *******

* PURPOSE: A 1-LINE SYNOPSIS OF WHAT IT DOES AND WHY *
*************************** *

* DESCRIPTION :- ????? (a more detailed description)
,

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ??????.
OBJECT-COMPUTER. ??????.

DATA DIVISION..
* DATA ORAGANIZATION
.

WORKING-STORAGE SECTION.

* INCLUDE FILES
.

COPY ? ?

* LOCAL VARIABLES
*

* INTERFACES
,

LINKAGE SECTION.

* GLOBAL DATA ITEMS

* INPUT ARGUMENTS
?

Figure 6-1. COBOL Program Template

6-2

UM 620324000
30 September 1990

* OUTPUT ARGUMENTS
?

* LIMITATIONS :-
*

* PROCESS DESCRIPTION (optional)
,
PROCEDURE DIVISION.

START-PROGRAM.
*

* RETURN
,
EXIT-PROGRAM.

EXIT PROGRAM.

* PROCESS ERROR

COPY ERRPRO.

Figure 6-1(continued). COBOL Program Template

6-3

UM 620324000
30 September 1990

C(
SUBROUTINE XXXXXX (ARGI, ARG2)

C**
C**

C** *
C** PURPOSE: A 1-LINE SYNOPSIS OF MODULE *
C** *

C**

C** DESCRIPTION :-C**

C** ???????? (a more detailed description; multiple lines)
C**
C**

C** INTERFACES :-
C**
C** INPUT ARGUMENTSC**

C**
C** OUTPUT ARGUMENTS
C**

C**

C** INCLUDE FILES
C**

C**

C** GLOBAL DATA ITEMS
C**

C**

C** DATA ORGANIZATION :-
C**
C**

C** LOCAL VARIABLES
C**

C**

C** LIMITATIONS :-
C**

C)
C**

C* *C** PROCESS DESCRIPTIONS
C**

END

Figure 6-2. Fortran Template

6-4

UM 620324000
30 September 1990

/* --/*

* NAME: main
,
* PURPOSE: TO CREATE A .DOC FILE TO FIT FADS SPECIFICATIONS
,
* SYNOPSIS
* MODULE NAME(argl,arg2...)

* INPUTS/OUTPUTS
*

* INPUTS:
* argl

* OUTPUTS:
* arg2

* DESCRIPTION:
* A COMPLETE DESCRIPTION AS YOU SEE FIT.
*/

? (rest of program)

Figure 6-3. "C" Template

6-5

UK 620324000
30 September 1990

SECTION 7

IISS ERROR HANDLING PHILOSOPHY

7.1 Introduction

This plan presents an overall philosophy in error handling
for IISS. The philosophy emphasizes the generalities and not
the specifics for the handling of a particular error by a
subsystem. The overall philosophy for all subsystems will be
presented first. Then the procedures applying to each
subsystem will be discussed individually. Where the individual
subsystems do not currently adhere to this IISS Error Handling
Philosophy, changes will be made in a gradual manner as new
versions of modules are produced.

7.2 Overall Philosophy

7.2.1 Error Definition

Errors that can be encountered in IISS can be classified
into one of four catagories. These catagories are defined as:

1. NON-FATAL INFORMATIONAL ERRORS: The User needs to get
information returned to him. An AP has noticed that the
user has done something wrong, but is still up and
running. It is up to the AP to return the needed
information to the user through some screen-display
function. The error-handling routines discussed here
will not handle this type of error because, basically,
it is not an error. It is mentioned here only for
clarity.

2. FATAL ERRORS: Errors which an AP does not expect during
normal execution but the IISS system can act upon and
relay back to the AP and the user (e.g.: bad database
calls, mailbox-full timeouts, and any other errors which
are recoverable but will probably cause the user's AP to
fail. This type of error will be logged to the error
log file because it shows errors whose recovery
procedures were not programmed in and could cause an AP
to abort.

3. CATASTROPHIC ERRORS: Errors that don't cause an entire IISS
sub-system process to abort yet cannot be resolved by
the IISS program (e.g.: channel cannot be assigned, bad
initiation). This type of error must be logged and must
be "bubbled-back" to higher modules and to the
originating AP, if there is one. The User will also be
informed of the impending disaster.

4. IMPOSSIBLE ERRORS: Errors which cause an IISS process to
abort (e.g.: invalid decimal data, divide by zero).
These errors should be captured using the operating
system's trap handler and should be loqged to the error
log file. (Note: The trap handler facility has not been
implemented in IISS.) We would hope that these get

7-1

UM 620324000
30 September 1990

logged, but the IISS system may get caught in a loop,
for example, and would therefore never return to log it
(i.e.: it crashed).

7.2.2 Error Handling Objectives

The overall objectives of error handling are:

1. ALL error conditions should be uniquely and
concisely defined.

2. All error codes should be stored in files which are
maintained by the UI's Message Management (MM)
facility. No error code should be hard coded into
source code.

3. Errors should be logged so as to help software
developers locate problems.

4. Errors should be reported through the UI so as to
help users to determine the status of a request.

5. Error status should be returned so as to allow
other subsystem interfaces to recover from the
problem if possible.

6. Errors should be logged so that IISS users who
are not intimately familiar with IISS subsystem
code can understand and possibly narrow down the
cause of an error.

7.2.3 Error Handling Philosophy

When detecting an error, a module should process the error
using the following alternatives:

1. Based on the error, the module must return an IISS
status code to the calling module. After receiving
an error status code from a call to other subsystem
services such as NTM, IPC, the operating system, or
ORACLE, the error status code should be log~ed to
the error log file without any translation if it is
fatal. More information can be added to the log
using the message description. For modules that
issue operating system macro calls, it is good
practice to log all system error messages in the
log file to facilitate debugging.

2. Upon return from a lower level module or other
subsystem services, the higher level module should
always check the returned status code to determine
whether an error has occurred. An errorless run
should never be assumed if the call returns an
error status code. If an error has occurred, the
higher level module can choose to do one of three
things:

A. Recover from error and continue execution.

7-2

UM 620324000
30 September 1990

B. Invoke the error processing routine and then return
control to the calling module while passing the error
status back.

C. Call SIGERR which:
a) signals the user with a message about the error that
occurred
b) invokes the error processing routine and then the AP
may exit.

3. When a catastrophic error occurs, the software
should try to contain the error without affecting
the operation of other system components. In the
worst case, NTM should always abort the application
processes to ensure its own survival.

4. Fatal errors should be logged using the
"bubble-back" technique where the error is
progressively passed back up the calling chain.
The error is put in the log at each calling level
with a message pertinent to that level. In the
following example VALMBE is the lowest level module
and COMM02 is the highest:

- 84/03/12 15:34:46 VANDERMINDEN VALMBE 10015
WHILE VALIDATING MAILBOX ALREADY EXIST

- 84/03/12 15:34:46 VANDERMINDEN CRTMBX 10015
WHILE CHECKING EXISTENCE OF MAILBOX

- 84/03/12 15:34:46 VANDERMINDEN INICX2 10015
WHILE CREATING 'COMMIN2' MAILBOX

- 84/03/12 15:34:46 VANDERMINDEN INTCM2 10015
WHILE ESTABLISHING MAILBOX CONNECTION

- 84/03/12 15:34:46 VANDERMINDEN COMM02 10015
DURING INITIALIZATION

5. If an impossible error is detected, the operating
system's trap handler should be invoked and, if
possible, the error should be mapped to a fatal
IISS status code.

6. Each AP whose execution can be initiated from an
IISS terminal should inform the user or the
operator of the status of a request upon failure.
This applies to the CDM precompiler as well as any
other IISS system AP's such as UIMS applications.
A call to SIGERR (as opposed to just ERRPRO) would
be appropriate to accomplish that.

7.2.4 IISS Subsystem Error Status Codes

Each subsystem will create and maintain one or more error
status code file(s) using the message management facility. The
files will contain all error status codes that may affect the
subsystem. These error codes will be of an X(5) format. The
error codes for each subsystem will begin with a different

7-3

UN 620324000
30 September 1990

digit. This allows for easy identification and avoids the
overlapping of error codes between subsystems. The error code
prefix is assigned as follows:

1- IPC

2- Communications

3- NTM

4- CDMP

5- Application Interfaces

6- IBM Interface

7- User Interface

8,9- reserved for future subsystems

As more subsystems are added to IISS, this list will be
updated.

The second and third digit from the left of the error status
code may be used by each subsystem to identify the subsystem
specific category of the error.

An error code of zero represents the successful or OK
condition.

Since the error status codes are of an X(5) format, the
characters can be alphabetic. This opens up the number of
possible error status codes and prefixes for future IISS
applications. This also allows the error code prefixes to
correspond to the application subsystem designations. In order
to use alphabetics, though, the Message Management Utility of
the User Interface may have to be modified.

The naming conventions for the error status files have the
following prefix for file names:

1. ERRCOx--COMM

2. ERRNTx--NTM

3. ERRCDx--CDMP

4. ERRUIx--UI/VTI

5. ERRIPx--IPC

6. ERRSYx--System Wide Errors

The 'x' in the prefix is an alphanumeric character and is
assigned by the subsystem.

7-4

UM 620324000
30 September 1990

When programming in COBOL, program variable names should use
the prefix of 'KES' for all error status codes. The remaining
characters in the variable name should convey the description of
the error status code either in readable form or mnemonics. The
correspondence between variable names and the unique error
status codes are to be put in copy files. These copy files
should also contain comments indicating what descriptions the
mnemonic field names correspond to.

To insure portability in the other programming languages,
(i.e.: FORTRAN and C), the first six characters in the variable
name have to be unique. Because of this size limitation, the
'KES' prefix does not have to be used.

7.2.5 IISS System Wide Error Status Codes

System wide standardized AP status codes have been defined
for some frequent error codes such as for file errors, DBMS
errors, table errors, system service (SORT/MERGE) errors, or
memory allocation errors. These codes will have program
variable names which are unique in the first six characters.
This is to ensure language-independence and will allow all
source code to use the same program variable name for a
particular error code.

The system wide standardized error codes will be maintained
by the message management (MM) facility. The MM has a utility
called INCGEN. This utility will take the error codes and their
corresponding variable names and generate include files for the
various IISS programming languages.

Figure 7-1 contains a list of these standardized error
codes. This list will be expanded in the future as additional
system-wide error status codes are identified.

7-5

UM 620324000

30 September 1990

TYPE OF ERROR ERROR CODE ERROR DESCRIPTION

MEMORY ALLOCATION "00001" NOT ENOUGH MEMORY AVAILABLE
ERRORS

DBMS ERRORS "01000" DATABASE ERROR
"01001" DATABASE ALREADY READIED
"01002" DATABASE NOT READIED
"01003" DATABASE CANNOT BE OPENED
"01004" DEADLOCK
"01005" NO DUPLICATES ALLOWED
"01006" END OF SET
"01007" RECORD NOT A MEMBER OF SET
"01008" RECORD ALREADY MEMBER OF SET
"01009" RECORD TYPE NOT CURRENT
"01010" ROW NOT FOUND IN TABLE
"010111 BAD DML STATEMENT
"01012" DATABASE ROLLBACK ERROR
"01013" DATABASE COMMIT ERROR

FILE ERRORS "02000" FILE OPEN ERROR
"02001" FILE NOT rFUND
"02002" FILE NOT CREATED
"02003" FILE NOT DELETED
"02004" END OF FILE
102005" FILE NOT OPENED
"02006" FILE NOT CLOSED
"02007" READ ACCESS DENIED
"02008" WRITE ACCESS DENIED
"02009" FILE NGT INDEX SEQUENTIAL
"02010" FILE NOT SEQUENTIAL

Figure 7-1. Standardized Error Codes

7-6

UM 620324000
30 September 1990

TYPE OF ERROR ERROR CODE ERROR DESCRIPTION

TABLE ERRORS "03000" TABLE OVERFLOW
"03001" TABLE NOT FOUND
"03002" TABLE ENTRY NOT FOUND
"03003" TABLE FULL
"03004" TABLE WRITE ERROR
"03005" TABLE READ ERROR

SORT/MERGE ERRORS "04000" SORT PACKAGE ERROR
"04001" INVALID KEY

SPECIFICATION
"04002" FILE SIZE INVALID
"04003"1 ERROR CLOSING INPUT

FILE
"04004" ERROR CLOSING OUTPUT

FILE
"04005" ERROR OPENING INPUT

FILE
"04006"' ERROR OPENING OUTPUT

FILE
"04007" ERROR READING FILE
"04008" RAN OUT OF WORK SPACE
"04009" KEY SPECIFICATION

MISSING
"04010" TOO MANY INPUT FILES
"04011" ERROR WRITING FILE

Figure 7-1(continued). Standardized Error Codes

7-7

UM 620324000
30 September 1990

The following conventions should be followed in assigning
additional codes:

1. First character of the error code is "0"

2. Second character corresponds to the type of system
wide error as follows:

0- Memory Allocation
1- DBMS Errors
2- File Errors
3- Table Errors
4- SORT/MERGE Errors
5- NDDL Errors
6- 9--Additional Types

7.2.6 Conditional Data Items

For each error status file for each subsystem, there should
be an equivalent check status file. The three character prefix
for the file name is 'CHK' instead of 'ERR' for these files, but
the last three characters should correspond to their counterpart
error status files. This file will contain all conditional data
items to help in checking for error conditions. The values of
these conditional data items are equal to all the error status
codes.

If programming in COBOL, each conditional data item is
prefixed with 'QCS'. The remaining characters in the variable
name should convey the description of the error status code
either in readable form or mnemonics. The correspondence
between variable names and the unique error status codes are to
be put in copy files. These copy files should also contain
comments indicating what descriptions the mnemonic variable
names correspond to.

To insure portability in the other programming languages,
(i.e.: FORTRAN and C), the first six characters in the variable
name have to be unique. Because of this size limitation, the
'QCS' prefix does not have to be used.

7.2.7 Error Processing/Logging

There is a standard error processing routine written for
each IISS host computer called ERRPRO. This routine is invoked
to log all errors by any module using the following arguments:

1. IISS error code in the status field.

2. The six character name of the module where the
error is detected

7-8

UM 620324000
30 September 1990

3. Necessary debugging information to help the
programmer to locate the error including operating
system dependent error codes (e.g. VAX system
service error code or Level 6 macro status code).
This message description should be used in
describing the conditions under which the error
occurred, and not for explaining the error code.

This common error processing routine will date and time
stamp the error, format the error message, and write the error
message to the error log file (ERRLOG.DAT). This routine does
nct terminate the calling program. It returns control to the
calling program which will "bubble-back" the return status to
the top level module. Only the top level module can terminate
the program. Figure 7-2 contains a description of the Error
Processing module (ERRPRO). Figures 7-3(a) and 7-3(b)
describe the constructs for calling ERRPRO from a Cobol module
and a C module, respectively.

7-9

UM 620324000
30 September 1990

IDENTIFICATION

ERRPRO -- Process/Log Error

DESCRIPTION :

This module is used to process errors by logging
them on a file. There will be a ERRPRO routine in each
host computer. The module will make use of operating
system characteristics to perform the error logging.
This module will date and time stamp the error message
and format the error message before logging the message
on a file.

INTERFACES
ENTRY CONDITIONS :

RET-STATUS PIC X(5).
MODULE-NAME PIC X(6).
MESG-DESC PIC X(60).

EXIT CONDITIONS :

(NONE)

GLOBAL BLOCKS

(NONE)

DATA ORGANIZATION :
LOCAL VARIABLES :

(NONE)

DATABASE INTERACTION

(NONE)

LIMITATIONS
(NONE)

Figure 7-2. ERRPRO Module Specification

7-10

UM 620324000
30 September 1990

IDENTIFICATION DIVISION.

PROGRAM-ID. CRTMBX.

DATA DIVISION.

WORKING-STORAGE.

01 MODULE-NAME PIC X(6) VALUE 'CRTMBX'.
01 MESG-DESC PIC X(60).

LINKAGE SECTION.

01 RET-STATUS PIC X(5).

PROCEDURE DIVISION USING RET-STATUS.

CALL "CRTMBX" USING mailbox-name,
RET-STATUS

MOVE RET-STATUS TO CHECK-STATUS
IF SUCCESSFUL

ELSE
MOVE "WHILE CALLING CRTMBX " TO MESG-DESC
PERFORM PROCESS-ERROR.

EXIT-PROGRAM.
EXIT PROGRAM.

*

* PROCESS ERROR

COPY ERRPRO OF IISSCLIB. (This include file contains
the call to ERRPRO. The paragraph name is PROCESS-ERROR. The
following is a listing of the copy file).

PROCESS-ERROR.
CALL IERRPRO, USING RET-STATUS,

MODULE-NAME,
MESG-DESC.

Figure 7-3(a). How to Call ERRPRO from COBOL

7-11

UM 620324000
30 September 1990

/* NAME
* EXMPLE -
* Written: 1-AUG-1984 12:00:00
* Revised: 1-AUG-1984 12:00:00

* SYNOPSIS
* EXMPLE()

*

* Inputs/outputs:
.
* Inputs:
* error code

* Outputs:
*

* DESCRIPTION
* This is an example of how to call the
* COBOL routine, ERRPRO,
* from a "C" module.
* If an error occurs, get the error code,
* module name, set up
* the error message and pass them to ERRPRO.
*/

#include <stdtyp.h>#include <stdio.h>

char *exmple()
(

char mesg desc[60); /* area used for error mess.*/
char *retstatus(5]; /* error code */

char *module-name = "EXMPLE"; /* module name */
char ntm_buf[BUFDIZE];

Figure 7-3(b). How to Call ERRPRO from C

7-12

UM 620324000
30 September 1990

int ntmbufsiz;

initex(ntm_buffer,
ntm bufsiz,
ret-status);if

(strncmp(retstatus,GOODINITEX,RETCODELEN) != 0){
fndmsg(ret status,mesq desc);

/* find message string to fit error code */

errpro(ret status,
module name,
mesgdesc); /* pass error code,

module name and message
description to will format and

send error message to error log */

return (retstatus) ;

Figure 7-3(b)(continued). How to Call ERRPRO from C

7-13

UM 620324000
30 September 1990

While executing ERRPRO if a problem occurs in writing to
the error mailbox, the message is written to a file called
ERRFTL.DAT.

7.2.8 Error Log File

There will be a different log file maintained on each host
called ERRLOG.DAT. The standard error processing routine on
each host will log error messages on its respective error loq
file. Each record in the error log file contains the following
fields:

1. date and time of message logged

2. name of process logging the error

3. name of the module where the error is detected

4. IISS error code or operating system dependent error
code

5. message description information

7.2.9 Error Messages

An error message file will be maintained on the VAX
containing the defined meaning of all error codes in IISS. This
file will be maintained by the UI message management services.
A common error processing routine, if desired, can make use of
this file to print out a user friendly message.

7.2.10 Error Communication

A service called SIGERR is available for AP'S to send error
information to the IISS user and operator, as well as log
information to ERRLOG.DAT through ERRPRO. The information will
be sent to the User Interface when it is the original source of
the AP which called SIGERR and when it is in "test-mode" or when
it is an Informational Error. Figure 7-4 contains the
definition of the SIGERR call. Figure 7-5 contains the
construct for calling SIGERR from a Cobol module.

7-14

UM 620324000
30 September 1990

INDENTIFICATION : SIGERR

DESCRIPTION : The service, SICTERR, is available for AP's to send
error information through the IISS. The error
information will be sent to the following:

a) the IISS operator's console
b) the UI AP when it is the original source of the AP

who called SIGERR and when it is in "test-mode"
c) ERRPRO, who will get the error logged to ERRLOG.DAT

CALL DEFINITION :
CALL "SIGERR" USING ERROR-CODE

SEVERITY-LEVEL
ERROR-MSG
RET-CODE.

INPUT ARGUMENTS :
ERROR-CODE PIC X(5).
SEVERITY-LEVEL PIC X.
VALUES:
W--WARNING;Non-standard use of

feature which may cause
trouble

I--INFORMATIONAL;Always sent to the
UI and always
displayed

E--ERROR;Not fatal but may cause
improper execution

F--FATAL
ERROR-MSG PIC X(72).
(This field contains additional
information about the error.)

SPACE FILL IF NOT USED

OUTPUT ARGUMENTS
RET-CODE

RET-CODE VALUES :
SIGERR-SUCCESSFUL
SIGERR-UNSUCCESSFUL (Indicates that

the service was not successful
in sending a message with the
AP error information.)

Figure 7-4. SIGERR Definition

7-15

UM 620324000
30 September 1990

IDENTIFICATION DIVISION.

PROGRAM-ID. CDCE1.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 MODULE-NAME PIC X(6) VALUE "CDCE1".
01 MESG-DESC PIC X(60).
01 RET-STATUS PIC X(5).
77 SEVERITY-LEVEL PIC X.
77 ERROR-MSG PIC X(72).

COPY SRVRET OF IISSCLIB.

PROCEDURE DIVISION.
START-PROGRAM.

CALL "1RCV" USING NTM-LCHAN,
NTM-WTFLG,
NTM-SOURCE-DEST,
NTM-MTYP,
NTM-DLEN,
CS-ES-MESS-IN,
ACCEPT-STATUS,
NTM-MSNO.

IF NOT RCV-NORMAL-MESSAGE
MOVE "RCV CALL FAILED" TO MESG-DESC
MOVE ACCEPT-STATUS TO RET-STATUS
PERFORM PROCESS-ERROR
MOVE "F" TO SEVERITY-LEVEL
MOVE "RCV CALL FAILED" TO ERROR-MSG
CALL "SIGERR" USING RET-STATUS

SEVERITY-LEVEL
ERROR-MSG
RET-CODE

GO TO EXIT-PROGRAM.

EXIT-PROGRAM.

COPY ERRPRO OF IISSCLIB.

Figure 7-5. How to Call SIGERR

7-16

UM 620324000
30 Septembet 1990

The error message field is available for the programmer's
use to include additional or variable information about the
error. This field maps to the descriptor field in ERRPRO for
messages that are destined for the user's terminal. This field
might contain such information as the subroutine name or
filename associated with the error. Its use is for helping.the
user by giving information that could be helpful in diagnosing
and fixing an error or resource problem. This information will
be output on the user's terminal with the error code when the
user has "test-mode" set or if the error is designated as
informational.

7.2.11 Utilities

On each IISS computer there will reside an error log file
(ERRLOG.DAT). This file will contain all error messages. To
enable the IISS' users and developers easy access to this file,
an Error-Retrieval utility has been developed. This utility
allows for a variety of different ways to access this file and
extract the information in question. For example, if a user
wants to look at errors between a certain time period, the
utility can copy all messages for that time period either onto
the CRT screen or into another data file that the user has
specified.

When IISS gets to the point where it will communicate with
two or more computers, the error logs from the other computers
will periodically be moved to the VAX for storage and perusal.
A utility will be written to merge the error logs by date/time.
(This approach assumes that the clocks are close to the same.)

A mechanism is in place to periodically start a new error
log file. This will keep the error log file to a manageable
size.

The NTM subsystem has a file of its own in which it records
all messages, including error messages (NTMLOG.DAT). A utility
similar to the one developed for the error log file will be
provided. These utilities will allow for a variety of ways to
access and extract the information from this file.

7.3 Network Transaction Manager

7.3.1 Overview

The NTM's AP error handling can be categorized into local
APC and remote APC handling. Basically, all local message
processing errors (e.g. bad service arguments, authority
violations, local APC resources unavailable) can be determined
by the requesting AP in the return argument of the NTM Service
Call. On the other hand, errors that occur in handlinq the
destination AP of a request (e.g. entries not found in NTM
tables, resources not available at the remote APC, errors in
process starts) are handled with NTM "asynchronous" error
messages that are sent to the NTM at the immediate source of the
request. An AP will receive these messages only if its
characteristics are appropriately set in the NTM AP
Characteristics table. The "asynchronous" error messages that
are available are those associated with the abnormal termination

7-17

UM 620324000
30 September 1990

or start of the destination AP. The UI and CDMP can check for
these "asynchronous" messages in order to establish the status
of 6pawned AP's. The NTM uses the following means to handle its
own errors:

1. display error messages on the operator console

2. log all messages to the NTM log (NTMLOG.DAT)

3. call ERRPRO to log error messages.

7.3.2 Error Codes

The NTM error codes will be defined to clearly identify the
error conditions. There are several general types of errors
(e.g. unsuccessful AP start, abnormal termination) that are
indicated by the first three characters of the five character
error code. Specific problems are indicated in the last two
characters of the error code (e.g. missing executable). This
leaves APs that can not act on the specific information, to take
action on the general information of the first three characters;
while APs such as the UI can use the specific information
encoded in the last two bytes to inform the user of events that
might be of interest to him (e.g. destination APC down). The
information encoded in the error code is available to the IISS
operator in the message log (NTMLOG.DAT) so that the exact
problem can be determined for APs that do not decode the last
two bytes.

7.3.3 Error Communication

The NTM supplies a service called SIGERR to send error
information to the IISS user and operator. This service outputs
a message containing the error code and variable error
information on the operator's console. This error is also
logged in the NTM's log file (NTMLOG.DAT). SIGERR also sends a
message to the User Interface (UI) if the UI's "test-mode" is in
effect or if the error is designated as informational. The UI
will output the error code, error description, and variable
error information on the IISS user's terminal if its
"debug-mode" is in effect or the error is designated as
informational. (Refer to section 7.4.3 for more information on
test-mode and debug-mode.)

Two operator commands are available to enable (SE) or
disable (SO) error message reporting on the operator's console.
SO is the default condition. Setting SE will cause the error
messages to be displayed in real time on the IISS operator's
console.

7.3.4 Asynchronous Status Messages

The NTM sends messages regarding AP status to the UIMS so
the UIMS can display the message on the IISS user's terminal.
This message is of type ISE' and contains error code, severity
code, offending AP name, and error message. If the UI's
"test-mode" and "debug-mode" are set, the NTM will send all
messages that are displayed on the operator console to the U. 3

7-18

UM 620324000
30 September 1990

so the UIMS can display them on the terminal. Informational
status messages will always be sent to the UIMS and will always
be displayed.

7.4 USER INTERFACE

7.4.1 Overview

The User Interface is the IISS interface to the IISS user's
terminal. The UI uses ERRPRO to log all its errors to the error
log file. To help the user in dectecting errors, the form
processor (UI) allows for a debug mode where all error messages
are displayed on the terminal.

On detecting an error within the UI due to NTM, IPC, or
ORACLE calls, the UI should display a message on the terminal
informing the user of the condition. This allows the user to
determine whether the request is successful or not. If a fatal
error is detected that may affect the future operation of the
UI, the UI should pass a message to the NTM using SIGERR so that
the NTM can display the message on the operator console.

7.4.2 Asynchronous Statue Messages

The UIMS accepts and handles "asynchronous" messages that
are sent by the NTM regarding the status of a request. The UI
receives a message type 'SE' that is generated by an AP with the
SIGERR NTM service call or by the NTM in its processing of _
message in the service of an UI initiated AP. This message is
sent to the UI only if the "test-mode" has been set to 1 or 2 by
the UI or the error is designated as informational. The data
returned to the UI includes the error code, severity level, name
of the offending AP, and the error message. A "test-mode" of 2
limits the messages sent to the UI to fatal messages. After
receiving an 'SE' message, the UI will display the message on
the IISS terminal that initiated the request if "debug-mode" has
been set by the user or if the error is designated as
informational.

7.4.3 Test-mode And Debug-mode

The "test-mode" enabled switch currently depends on the roleof the IISS user and the requested AP. The IISS user can set

the "test-mode" on the function screen when initiating the AP.
An enabled switch causes the UIMS to call the NTM services which
tell the NTM that the "test-mode" is set. While in the test
mode, if the IISS user hits the DEBUG key instead of the ENTER
key, all error messages will be displayed on the terminal. This
includes all UI messages and all NTM messages that are normally
sent to the IISS operator's console. If the "test-mode" is not
enabled, hitting the DEBUG key will have no effect at all and
only informational messages will be displayed. If the
"test-mode" is enabled but the DEBUG key is not hit, then only
informational messages will be displayed.

7-19

UM 620324000
30 September 1990

7.4.4 Error Communication

The UI will use the NTM service SIGERR to inform the NTM of
errors that will affect the future operation of the UI. The NTM
can then display this error condition on the operator's console.
If the UI is being run in stand-alone mode (not connected to the
NTM), the error messages will be displayed on the attached
terminal to ask the user to inform the IISS operator.

7.4.5 Message Management

The message management (MM) facility will be used to define
and maintain the names and meanings of specific five character
error codes. The files produced by MM will be used by the UI to
display a meaningful error message on the IISS user's terminal
based on the five character error code.

7.5 Common Data Model Processor

The CDMP software is divided into two categories, the
precompiler that interacts with the user through the terminal
(UI) and the query processor that interacts with the user
through the user written application process.

All CDMP software will use ERRPRO to log all errors. It
will also use SIGERR to send messages back to the user terminal
upon encountering errors which affect the future operation of
the software. These error indications will also be output on
the operator's console. The errors will only be output on the
user's terminal if "test-mode" and "debug-mode" are set.

7.5.1 Precompiler

The precompiler interacts with the user through a forms
interface, thus allowing the precompiler to use the user's
terminal as a means of displaying error messages. At
termination time, one of the outputs generated from the
precompiler is the listing file. This file contains all
information about the syntax errors encountered during the
precompile activity and the names of the AP's generated. The
total number of syntax errors and the names of the generated
APs will also be output to the IISS user's terminal.

On precompiler aborts such as from a bad input file name,
the precompiler should terminate gracefully with an error
message to the user terminal. The user may then reinitiate the
precompile inputting the correct information.

7.5.2 Query Processing

The distributed request supervisor (DRS) is the management
software for all data base queries. In order for the DRS to be
informed of the unsuccessful starts of local request processors
(LRP's), aggregators, and conceptual to external transformers
and of other kinds of error conditions, the characteristics of
the DRS must be set up to accept "asynchronous" messages from
the NTM. Cognizance of these error conditions will prevent the
DRS from waiting forever to get results.

7-20

UM 620324000
30 September 1990

The query processing is done as a result of a neutral data
manipulation lanquage (NDML) statement being encountered in an
AP. A COBOL variable called NDML-STATUS has been reserved for
the CDMP to return the status of the NDML data request to the
AP. This allows the AP to differentiate between an error
condition and the "no record found" condition. The error
condition can then be recorded for further investigation and the
"no record found" condition can indicate a legitimate answer for
the data request.

7.6 COMMUNICATIONS SUBSYSTEM

COMM uses ERRPRO to log all errors to the error log file.
Upon detecting a failure to communicate with the target host or
other recoverable errors, COMM passes a message back to the NTM.
The NTM then displays the message on the operator console so
that the operator can investigate the problem and attempt to
recover. An AP can be notified by the NTM of these
communication problems through the use of "asynchronous"
messages. This includes such errors as "binary message
encountered when ASCII mode expected". The AP must be set up to
accept these error messages or no error information is
communicated.

7.7 IPC AND IHC

The IPC and IHC primitives call ERRPRO to log errors to the
error log file. All errors, except the mailbox full condition,
are logged as fatal errors. The primitives then return a
non-zero status code to the calling routine so that appropriate
action can be taken. There are no detectable errors that cause
the primitives to abort.

7-21 *u.S. 6OERNMEN7 PRIN41ING OFF7CE: 1992 - 645-127/62309

